Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Tissue Engineering and Regenerative Medicine ; (6): 213-223, 2023.
Article in English | WPRIM | ID: wpr-1003126

ABSTRACT

BACKGROUND@#Eye irritation tests with animals have been conducted for a long time. However, the subjective decision to irritation, the anatomic/physiologic difference between species and humans, and ethical issues are crucial problems. Various research groups have paid attention to alternative testing methods. In these senses, we fabricated in vitro minicornea models with immortalized human corneal epithelial cells (iHCECs) and keratocytes (iHCKs) and used them for irritation tests. This study hypothesized that our mini-cornea model could present different viability tendencies according to test chemicals with different irritancy levels. @*METHODS@#Cells used in this study were characterized with cornea-specific markers by immunocytochemistry and western blot. To make a three-dimensional hemisphere construct like cornea stroma, we cultured iHCKs under modified culture conditions verified by matrix formation and total collagen content. iHCECs were seeded on the construct and cultured at an air–liquid interface. The model was treated with 2-phenoxyethanol, triton X-100, sodium lauryl sulfate, and benzalkonium chloride. @*RESULTS@#iHCECs and iHCKs presented their specific cell markers. In modifying the culture condition, the group treating ascorbic acid (200 lg/ml) presented an intact cellular matrix and included the highest collagen content; thus, we used this condition to fabricate the mini-cornea model. The model shows hemisphere shape and homogenous cell distributions in histological analysis. We observed different sensitivity tendencies by types of chemicals, and the model’s viability significantly decreased when the chemical concentration increased. @*CONCLUSION@#In this study, we performed and observed irritation tests using a tissue-engineered mini-cornea model and considered to apply as an alternative approach for animal tests.

2.
Tissue Engineering and Regenerative Medicine ; (6): 83-92, 2023.
Article in English | WPRIM | ID: wpr-968801

ABSTRACT

BACKGROUND@#The extracellular matrix (ECM) has many functions, such as segregating tissues, providing support, and regulating intercellular communication. Cartilage-derived ECM (CECM) can be prepared via consecutive processes of chemical decellularization and enzyme treatment. The purpose of this study was to improve and treat osteoarthritis (OA) using porcine knee articular CECM. @*METHODS@#We assessed the rheological characteristics and pH of CECM solutions. Furthermore, we determined the effects of CECM on cell proliferation and cytotoxicity in the chondrocytes of New Zealand rabbits. The inhibitory effect of CECM on tumor necrosis factor (TNF)-a-induced cellular apoptosis was assessed using New Zealand rabbit chondrocytes and human synoviocytes. Finally, we examined the in vivo effects of CECM on inflammation control and cartilage degradation in an experimental OA-induced rat model. The rat model of OA was established by injecting monosodium iodoacetate into the intra-articular knee joint. The rats were then injected with CECM solution. Inflammation control and cartilage degradation were assessed by measuring the serum levels of proinflammatory cytokines and C-telopeptide of type II collagen and performing a histomorphological analysis. @*RESULTS@#CECM was found to be biocompatible and non-immunogenic, and could improve cell proliferation without inducing a toxic reaction. CECM significantly reduced cellular apoptosis due to TNF-a, significantly improved the survival of cells in inflammatory environments, and exerted anti-inflammatory effects. @*CONCLUSION@#Our findings suggest that CECM is an appropriate injectable material that mediates OA-induced inflammation.

3.
Tissue Engineering and Regenerative Medicine ; (6): 71-79, 2021.
Article in English | WPRIM | ID: wpr-904074

ABSTRACT

BACKGROUND@#Extracellular vesicles (EVs) exhibit potential as functional biomolecules for tissue regeneration and immunomodulation as they play important roles in the physiological communication between cells. EV internal cargo contains miRNAs, proteins, lipids, and so on. Osteoarthritis (OA) is a common joint disease causing disability owing to impaired joint function and pain. EVs originating from animal cells and tissue matrices are also being considered for OA, in addition to research involving non-steroidal therapeutic agents. However, there are no studies on EVs from marine organisms. Hence, we focused on sea cucumber-derived EVs and conducted experiments to set up an extraction protocol and to demonstrate their efficacy to modulate the inflammatory environment. @*METHODS@#Sea cucumber extracellular matrices (SECMs) were prepared by a decellularization process. Lyophilized SECMs were treated with collagenase and filtered to isolate sea cucumber extracellular vesicles (SEVs). After isolation, we conducted physical characterization and cell activation studies including cytotoxicity, proliferation, and anti-inflammation effect assays. @*RESULTS@#The physical characterization results showed circular SEVs in the size range of 66–480 nm. These SEVs contained large amounts of protein cargo, infiltrated the synoviocyte membrane without damage, and had a suppressive effect on inflammatory cytokines. @*CONCLUSION@#This study established an extraction process for EVs from sea cucumber and reported the anti-inflammatory ability of SEVs. Isolated SEVs can be further utilized for tissue regeneration studies and can be compared to various marine or animal-derived EVs.

4.
Tissue Engineering and Regenerative Medicine ; (6): 71-79, 2021.
Article in English | WPRIM | ID: wpr-896370

ABSTRACT

BACKGROUND@#Extracellular vesicles (EVs) exhibit potential as functional biomolecules for tissue regeneration and immunomodulation as they play important roles in the physiological communication between cells. EV internal cargo contains miRNAs, proteins, lipids, and so on. Osteoarthritis (OA) is a common joint disease causing disability owing to impaired joint function and pain. EVs originating from animal cells and tissue matrices are also being considered for OA, in addition to research involving non-steroidal therapeutic agents. However, there are no studies on EVs from marine organisms. Hence, we focused on sea cucumber-derived EVs and conducted experiments to set up an extraction protocol and to demonstrate their efficacy to modulate the inflammatory environment. @*METHODS@#Sea cucumber extracellular matrices (SECMs) were prepared by a decellularization process. Lyophilized SECMs were treated with collagenase and filtered to isolate sea cucumber extracellular vesicles (SEVs). After isolation, we conducted physical characterization and cell activation studies including cytotoxicity, proliferation, and anti-inflammation effect assays. @*RESULTS@#The physical characterization results showed circular SEVs in the size range of 66–480 nm. These SEVs contained large amounts of protein cargo, infiltrated the synoviocyte membrane without damage, and had a suppressive effect on inflammatory cytokines. @*CONCLUSION@#This study established an extraction process for EVs from sea cucumber and reported the anti-inflammatory ability of SEVs. Isolated SEVs can be further utilized for tissue regeneration studies and can be compared to various marine or animal-derived EVs.

SELECTION OF CITATIONS
SEARCH DETAIL